Equivalent fractions (1)

Shade the bar models to represent the equivalent fractions.

1	1
2	2

$$\frac{1}{2} = \frac{3}{6}$$

100	1	
	2	

$$\frac{1}{2}$$

$$\frac{1}{2}=\frac{5}{10}$$

c)

1	1	1	1	1
5	5	5	5	<u></u>

$$\frac{4}{5}=\frac{8}{10}$$

$$\begin{array}{|c|c|c|c|c|c|}\hline \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \hline \end{array}$$

$$\frac{6}{8} = \frac{3}{4}$$

Use the fraction wall to complete the equivalent fractions.

	1/2				1/2			
$\frac{1}{4}$ $\frac{1}{4}$		- 2	<u>1</u>	1/4				
	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

a)
$$\frac{1}{2} = \frac{4}{4}$$

c)
$$\frac{2}{4} = \frac{4}{1}$$

e)
$$\frac{1}{8} = \frac{3}{4}$$

b)
$$\frac{1}{2} = \frac{1}{8}$$

d)
$$\frac{2}{8} = \frac{4}{4}$$

f)
$$\frac{2}{2} = \frac{4}{4} = \frac{8}{8}$$

a) Label the fractions on the fraction wall.

1						

b) Use the fraction wall to complete the equivalent fractions.

$$\frac{1}{3} = \frac{\boxed{}}{6} = \frac{3}{\boxed{}}$$

$$\frac{3}{\boxed{}} = \frac{6}{\boxed{}} = \frac{9}{\boxed{}} = 1$$

4

Here is a fraction wall.

1/2					1/2				
<u>_1</u>	<u> </u>	1 3			1 3			<u>1</u> 3	
1/4		1/4		1/4			1/4		
<u>1</u> 5		1/5		<u>1</u>		<u>1</u> 5		<u>1</u> 5	
<u>1</u> 6	-	5		<u>1</u>	<u>1</u> 6		<u>1</u> 6		<u>1</u>

Is each statement true or false? Tick your answers.

a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$

True False

c)
$$\frac{2}{4}$$
 is equivalent to $\frac{3}{6}$

d)
$$\frac{2}{3}$$
 is equivalent to $\frac{4}{5}$

e)
$$\frac{2}{3}$$
 is equivalent to $\frac{4}{6}$

f)
$$\frac{3}{5}$$
 is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements.

Ask a partner to say if they are true or false.

Are the statements always, sometimes or never true?
Circle your answer.

Draw a diagram to support your answer.

a) The greater the numerator, the greater the fraction.

always sometimes never

5

b) Fractions equivalent to one half have even numerators.

sometimes	never
	sometimes

5

c) If a fraction is equivalent to one half, the denominator will be double the numerator.

always sometimes never